
The physics of the overhead fly cast 
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Introduction 

• Primarily a fly rod is a lever that is tapered for practical 
reasons. Essentially, it is a simple speed amplifier, using 
rotation in a limited space but at a cost; kinetic energy 
has to be put into the lever, which is then wasted 
during the stop at the end of the cast.  

• It is also a smart spring, which flattens the tip trajectory 
to provide an efficient loop in the fly-line. But it does 
more than this. As it deflects, the spring function of the 
rod stores energy, most of which will be released into 
the line, at the end of the cast, providing the timing of 
the caster’s motion is correct. Also at the end of the 
cast, the rod butt will be stopped and the remaining 
kinetic energy will be in the rod-tip, which creates the 
loop shape during counter-flex.  

• So the “flexible lever” is a friendly, casting tool, that 
enables the caster to deliver between 20% to 80% of 
used energy into the fly-line, depending on conditions, 
and we are going to look at the reasons why this is so. 
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The objective 

• To understand the basics of the complex mechanics of the overhead cast.  

• When considering a complex mechanism, firstly it is worth simplifying it as 
much as possible and then later the relevance of the model can be 
improved as far as it can. Initially, it is important to concentrate on the 
main issues.  

• In which case we assume that air drag and all friction forces are negligible. 
Such friction and damping forces tend to slow down speeds and reduce 
amplitudes, but they do not change the main mechanisms involved.  

• We also neglect the effects of gravity and use a one-dimensional model 
consisting essentially of a marble and a spring.  
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The spring & marble model (1/2) 

• The rod is represented by a spring and the line by a marble.  

• The caster pushes on the spring, which in turn pushes on the marble on a 
flat surface, along a straight line (simplifying assumptions).  

• Thus the lever function of the rod is discounted but it can be reintroduced 
at a later stage (lever arm effect).  

• The caster accelerates and decelerates the spring motion to a stop; the 
spring is temporarily compressed and launches the marble at some time 
as it unloads.  
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A forward cast simulation scheme 
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The spring & marble model (2/2) 

• This is the scheme that is used to assess the equations of the model; 
another mass is included to represent a reel, at the butt of the spring.  

• The input displacement is alpha (α), its speed is denoted with a dot (ά) 
and its acceleration with a double dot (ἅ).  

• The output is denoted x, its speed is denoted with a dot (ẋ) and its 
acceleration with a double dot (ẍ).  

• Initially alpha and x are set at zero.  
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The technique used to get the main equations (1/3) 

• Since we have two parameters (α and x) it is appropriate to use the 
Lagrangian equations to solve the problem. The specific conditions 
needed to use this technique are met (degrees of freedom, complete 
description of the system).  

• The Lagrangian is the difference between the kinetic energy of the system 
and its potential energy (corresponding to the spring energy here).  

• This mathematical technique is a very smart way to apply Newton’s Laws 
for mechanical systems.  

• The details of the Lagrangian equations are given in appendix.  

 

 Note: Joseph Louis Lagrange was a mathematician who put the basis of analytical mechanics 

and differential equations. Lagrangian mechanics are of great help when Newton’s classical 
approach is no more convenient, such as problems with multiple degrees of freedom. 
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The technique to get the main equations (2/3) 

• Notations:  
– Reel mass = m  

– Spring stiffness = k, constant (linear spring) 

– Spring mass = μ  

– Line mass (marble) = M  

• Energies for the Lagrangian: 
– Kinetic (for all masses under motion, including the reel): the classical formulation is 

1/2 mass * velocity2  

 

 

– Elastic (spring under compression/extension): the classical formulation is ½ 
stiffness * deflection2 . 

 

 

 

• Lagrangian (L): 
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The technique used to get the main equations (3/3) 

• One difficulty is to properly represent the kinetic energy of a moving spring. 
Most of the time a spring is considered to have no mass and is fitted with an 
equivalent mass at its tip to represent its behaviour under vibration. This 
equivalent mass is equal to the third of its actual mass. This is represented by 
the name “simple spring” here, whilst we call the actual model of the spring 
we are using with the Lagrangian equations a “true spring”.  

 

– Simple spring:  

 

– True spring:  

 

• In the appendix we describe the method to clarify this difficulty, and find the 
final result for energies. There are three components for the mass of the 
spring: the equivalent mass at the rod-tip, the equivalent mass at butt, and 
something we call the “equivalent transfer mass”. In the particular case of a 
spring, they are all equal.  
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What the equations can tell us (without solving them) 

• There are two equations, one corresponding to each variable (α and x): 
– The equation of the motion of the marble at tip(x), from which we can get important 

information. 

– The equation giving the force needed to cast, which comes from the Lagrangian 
equation for α. 

• Solving the equations can be achieved through a numerical process, but it 
is not necessary to solve them to capture some important mechanism. 
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Tip motion equation (1/2) 

• Firstly, considering the motion equation: the first line represents the equation straight 
from the Lagrangian technique application; the second line is the same equation 
where the acceleration of the tip (ẍ) of the spring (or the marble as long as it has not 
been launched) is expressed in the other terms.  

 
 
 

 
 

• The first term is associated with input acceleration (ἅ>0), and comes from the 
equivalent transfer mass in the equations. It is negative (minus sign) and 
consequently:  
– Initially, accelerating from zero, whilst the spring is not yet compressed (meaning that α-x is 

negligible), the tip is subjected to negative acceleration, which is why its very first reaction is 
to move backwards.  

– However, if the rod-butt is decelerated rapidly (ἅ<0), the first term becomes highly positive 
and contributes to boosting the acceleration of the tip. This is a major consideration when 
casting short line lengths (e.g. leader only), and should convince the caster to decelerate his 
rod quickly to get this boost. 
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Tip motion equation (2/2) 

• The second important thing you can see is the second term, which tells you 
that the acceleration of the tip depends on the deflection of the spring (α-x) 
and on the square of the angular frequency of the mechanical system: the 
faster the system and the larger the deflection is, the higher the acceleration 
of the tip and marble is.  

 

 

 

• This shows that there is an incentive to create a good bend into the rod, and 
that the frequency is the single most important parameter of the mechanical 
system. Mass and stiffness are involved but only the frequency of the system is 
important (set M = 0 and you have the fundamental frequency of the spring 
alone): you can imagine several different mechanical systems of this type 
having the same frequency:  
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Butt motion equation (1/2) 

• We can make the same analysis, starting from the second Lagrangian 
equation (first line), and express the butt acceleration equation (ἅ) as a 
function of the other terms: 

 

 

 

 

 

• Since we know already that the tip acceleration (ẍ) remains positive as 
long as the rod has come to its straight position (RSP), and that α-x is 
positive up to that point too, then you realize that two parameters already 
exist to decelerate the rod (ἅ<0). 

28/02/2016 © Daniel Le Breton 2016 15 



Butt motion equation (2/2) 

• The term in ẍ comes from the transfer equivalent mass (same as for the tip 
motion), and the smaller the reel mass and/or the butt equivalent mass 
are, the higher the deceleration of the butt is.   

• The second term relies to spring deflection and is always negative as long 
as the rod has not reached RSP. So the larger the maximum deflexion is, 
the larger the deceleration effect on the rod butt. 

• The third term is the caster’s input force, and then you can speculate that 
if the two other terms are large enough, then there might not be a need 
for an extra deceleration due to the caster himself (meaning Fα  <0). Any 
extra mass at butt (reel) is diminishing the intensity of the caster’s 
deceleration (Fα  ) and should be avoided, as far as possible. 
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Force involved in moving the spring and all masses 

• This is given by the second Lagrangian equation, but we can also replace it with a 
combination of both equations (their sum) and here Newton’s law is clearly visible: 
the force at the butt of the spring is the sum of the forces exerted on the “reel” 
mass, on the marble and on the spring itself, where it appears as if its mass is 
concentrated at is centre of mass (its acceleration is the average of the tip and butt 
accelerations):  

 

 

• If we had chosen to model the spring as having no mass, with its equivalent mass 
(μ/3) at the tip only, then we would have found that the force applied by the 
caster would have to be equal to the ones necessary to compress the spring and to 
move the reel. Ignoring the reel (m=0), then the required force can be deduced, 
easily, from the deflection of the spring.  
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Conclusions about motion equations 

• Without solving the equations, we can identify the main parameters 
involved in the physics of the cast: 
– the natural frequency of the spring & marble system with load (M) at tip,  

– the deflection that the spring will be able to achieve  

– the characteristics of the spring (the components of its mass: the three equivalent 
masses identified through the analysis of its kinetic energy). 

– and the effect of the caster’s input, especially for the deceleration to a stop (casting 
style).  
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Illustration of two equivalent mass ratios 

• If we simplify the conditions (no reel mass, no line mass), then the acceleration / 
deceleration characteristics linked to the spring are made of two ratio of equivalent 
masses: 
– The “transfer equivalent mass” / the equivalent mass at tip (ẍ), representing tip boost 
– The “transfer equivalent mass” / the equivalent mass at butt (ἅ), representing self deceleration 

• In our imperfect world, we cannot optimize both at the same time, and here is an 
illustration for simple shafts of constant slope (fly rods correspond to 0.75 to 0.85 in the 
abscissa). In other words tip action rods are more prone to inertial transfer for the tip 
and butt action ones are better for butt self deceleration: 
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The caster’s input  

• A very practical way to describe 
the caster’s input is to use the 
speed of rotation. Some devices 
can record this (e.g. casting 
analyser®), and they show an 
almost linear increase followed by 
a sharp decrease. At the very end 
a “rebound” is evident, which is 
due to rod reaction (counter flex) 
influencing the movement of the 
caster’s arm. The arm is relaxed 
during this phase in order to 
dampen the counter flex and 
possible vibrations.  

• For modeling we ignore the 
rebound and decrease the speed 
to zero. 
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A particular case, the free deceleration 

• This applies when the caster ceases to act on the spring at the very end of 
the acceleration phase, and release grip on the rod butt with the “reel” 
mass attached, and the marble (line)is pushed by the tip of the spring.  

• In this case, from the very moment when the caster ceases to act on the 
system, these equations become both conservative (no external force any 
more and so energy is conserved) and both acceleration in α and x 
become linked together.  

• From the model used (M = μ = 10 grams, m≃1.5 gram), we can estimate 
the relative amplitude between the acceleration of the marble and the 
deceleration of the butt of the spring, which shows a rapid deceleration of 
the butt:  

 

• If we where casting an apple with a stick this amplification would be much 
larger (e.g. 10 instead of 3) 
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Illustration of the “self deceleration mechanism” 
(without reel here) 
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Butt displacement profile under free deceleration (1/3) 

• Below you can find illustrations for various cases: 
– Reference case with a driven deceleration to a complete  stop 

– Self deceleration mechanism (SDM), followed by a rebound, then another SDM, etc. 

 

• Notations: 
– RSP = rod straight position (1= first occurrence, 2 = second occurrence, etc.) 

– MCF = maximum counter flex of the spring 

 

• The vertical scale has been adapted to degrees of rotation (of rod butt), 
which should simplify understanding by casters. 
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Butt displacement profile under free deceleration (2/4) 

• Diagram on left - the reference cast with a driven deceleration and a complete stop at 
107 degrees from start.  

• Diagram on right - the SDM mechanism appears, there is a brief stop at 0.37s from 
start, for an angle of 90 degrees, then the butt moves backwards slightly and forwards 
again.  
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Butt displacement profile under free deceleration (3/4) 
• Two other examples where we can see the butt displacement changing, 

stopping, and even reversing before restarting forward:  
– Light load (marble mass = 5 grams): the SDM is hardly visible  

– Heavy load (marble mass = 15 grams): the SDM is strong and drives the butt of the 
spring backwards temporarily before a rebound.  
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Butt displacement profile under free deceleration (4/4) 

• These illustration show that whatever the conditions, the spring is keeps 
on moving (no energy loss in the assumptions) and that in practice there is 
always some energy wasted by the caster in order to bring the spring to a 
complete standstill.  

• The conclusion is that the spring has the potential to decelerate its butt, 
but that the caster has to spend some energy to stop it completely, at the 
very least by damping the energy due to the counter flex of the rod.  

• The SDM mechanism is always within the system but its amplitude is 
controlled by the mass of the marble and the timing of the cast. This 
influences considerably the force that the caster has to produce. When 
the SDM is fully in place, the caster does not need to spend excessive 
energy to bring the rod to a final stop. If the conditions are not met, then 
he has to absorb some kinetic energy remaining in the butt of the rod.  
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“Ideal” SDM condition illustrated 
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Main results from modelling 

• If we solve the equations, then we can fully describe the speed history of 
the tip in time and test many options by varying inputs:  
– Casting style: change acceleration and deceleration timing and intensity, change the 

casting arc (the larger it is, the higher will be the speed of the marble at launch) 

– Spring and marble characteristics and load: spring stiffness, spring mass, marble mass 
(tackle frequency effects) 

– Energy use: caster’s input, kinetic energies (spring, “reel” mass, marble) and elastic 
energy (spring) 

• This is an extensive piece of work and here we shall just illustrate a few 
points, some speed profiles (tuned for realistic figures in terms of fly line 
speeds), and some deflection profiles. We consider a reference case with a 
simple spring, and there is already a speed amplification, and then we add 
the true spring characteristics, and on top of that a non linearity of the 
stiffness of the spring (hard spring: stiffer and stiffer as its deflection 
increases). 
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Main messages on speed (1/3) 

• A few results can illustrate the influence of the inertial effect due to the equivalent 
transfer mass and the non linearity of the spring of a fly rod (added on top). The 
following case corresponds to a “leader only” cast and shows the benefit of the inertial 
transfer due to the (moderately) sharp deceleration (illustrated by the input speed). The 
marble is launched when the speed of the tip of the spring (illustrated below) is 
maximum, in other words at the top of the curves. 

• The amplification in speed can be visualized by comparing with the top of the input 
speed profile. 
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Main messages on speed (2/3) 

• Same model with an intermediate load: both inertial effect and non linearity 
combine with each other to bring a benefit to the caster by comparison the a 
linear simple spring (which is not the adequate representation of a spring, as 
discussed earlier): here we are in an intermediate situation where inertial 
effect and non linearity can gather to bring an extra speed amplification. 
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Main messages on speed (3/3) 

• Now with a heavier load (same model, same assumptions and parameters). The non-
linearity has increasingly more influence, whilst the inertial effect is nearly non-existent 
(it could differ if the casting style in the model is changed). Thus for long casts, the non-
linearity of a spring can provide another advantage to the caster.  

• It is worth knowing that non-linearity depends very much on rod length: small rods are 
very non-linear, and the converse applies for long rods. 
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Main message on “load” (1/2) 

• This is a hot topic since to make the spring “work” properly, the caster has to 
store some elastic energy in it (see SDM also). However, if load/spring 
deflection is necessary, marble speed can vary significantly with a similar load. 
There are many variables involved, particularly the casting style, and there is 
no simple rule to guide us with regard to “load”. There must be some load but 
too much will be less efficient. 

• First example: as we increase line length and casting arc, both speed and 
deflection increase, and these are managed by the frequency fit of the cast. 
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Main message on “load” (2/2) 

• There is no clear relationship between line speed and rod deflection, this 
is blurred by other characteristics such as  
– Casting style (e.g. overpowering increases deflection but not line speed)  

– Non-linearity of the rod, as illustrated below (compare the linear rod in green to the non 
linear rod in purple, for a given cast) 
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Energy budget 

• For simplicity we ignore the reel: accelerating and decelerating it is just a loss 
of useful energy. The lighter it is, the better.  

• Figures can vary significantly; let’s concentrate on rod and line, and start by 
the energy allocation for a fair cast:  
– 75% ends up in the line (kinetic energy), 1/3 coming from elastic storage (rod deflection)  

– 25% ends up in the rod (kinetic energy transferred from elastic energy during counter-flex)  

– 80% of the 25% of the rod energy remains in the tip and is lost at the end of the cast (20% of 
all energy); the rest is used for butt deceleration and transfer to the line  

– For the line, the remaining 2/3 comes from leverage of the fly-rod during acceleration, and 
leverage and transfer during the deceleration phase.  

• For a poor cast, most of the leverage energy in the line comes from the 
acceleration phase, very little from the deceleration phase.  
– 40% ends up into the line, 60% into the rod.  

– 30% of line energy comes from elasticity  

– The caster has to produce energy to stop the butt of the rod, increasing the share of rod 
energy in the allocation. 

 

28/02/2016 © Daniel Le Breton 2016 34 



28/02/2016 © Daniel Le Breton 2016 35 



Conclusions 

• Modeling can tell us many more things but this review focuses on 
understanding the behavior of a fly-rod.  

• In the overhead fly cast, there are several underlying phenomena which 
provide an advantage to the caster:  
– The speed amplification effect from the spring which is added to the obvious speed 

amplification effect of the lever, even though the latter can be moderated by rod deflection  

– The inertial effect coming from a single component of the combined swing weights 
(equivalent transfer mass / inertia)  

– The non-linearity of the spring (pretty variable with what is called “rod action”).  

– The self-deceleration mechanism, which helps the caster to decelerate and stop the butt of 
the rod and is mainly linked to the mass and timing of the cast.  

• Things vary in amplitude with the “load” of the rod (its deflection due to swing 
weight, line inertia and stiffness) but this provides a remarkable tool that is 
able to cast from short to long distance (up to a point), with the help of several 
underlying mechanisms that combine and/or interact with each other.  

•  A fly rod is an incredibly smart and complex tool indeed.  
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Next generation ? 

 Below you can find an illustration of the tip path of a fly rod  for a 2D model (the 0,0 
point corresponds to the shoulder joint, scales are in meters). This is a new model 
under development, and let’s hope we can come closer to reality when speaking about 
the behaviour of a fly rod. The main interest of this 2D model is to understand the role 
of the bending (shorter lever arm) on rod performance. 
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Appendix content 

• The kinetic energy of a moving spring 

• Lagrangian equations 

• Conservative case (SDM) 

• Adaptation of some equations to fly rods: 
– Scaling masses for the spring & marble model 

– Model adaptation to real rods and shortcuts 

– Angular parameters 

– Self deceleration equation for a rod 
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The kinetic energy of the moving spring 

• µ/L is the linear density of the spring (constant), and the mass of a small element 
corresponding to dy is µ/L*dy  

• The term in the parenthesis of the integral is the speed of the element dy 
• In that case you can find that if the spring is not displaced (ά = 0) then we have the 

classical description with 1/3 of its mass at the top: 
 
 

• In all other cases, the actual mass is fully represented. In fact there are three (equal in 
that case) components of the spring mass, one being linked to both tip and butt. 
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Lagrangian equations 

• Starting with the expression of the Lagrangian equation, partial derivatives of 
it can be used to create the expression, which equals the forces applied at the 
point corresponding to the variables: the butt of the spring (α) and the rod-tip 
(x). Since there is no external force applied to the rod-tip, the equation is 
conservative (0). At the butt end of the spring (α), force is generated by the 
caster:  
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Equations coming out from the calculation process 

• Equation derived from the variable x: 

 

 

• Equation derived from the variable α: 

 

 

• Sum of these two equations (one of Newton’s laws): 
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Conservative case (free deceleration) 

• Setting Fα = 0 allows the relationship between tip and butt acceleration to 
be calculated. Then one can deduce the acceleration of the marble with 
the first Lagrangian equation by eliminating the butt acceleration from it:  

 

 

 

• Since the marble keeps on accelerating because α>x as the spring is 
compressed, the butt decelerates by necessity (negative sign in the first 
equation). The rate of this deceleration increases with the weight of the 
marble and decreases with the weight of the reel mass.  

• In terms of modeling, m is pretty small and M is similar to μ, which gives 
the following order of magnitude; showing a fairly rapid deceleration rate: 
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Adaptation of some equations to fly rods 

• Scaling masses for the basic model 

• Model adaptation to real rods, and shortcuts 

• Angular parameters 

• Self deceleration amplitude for a fly rod 
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Scaling masses for the spring & marble model 

• Starting with a practical case. A rod for a number 6 line has a stiffness in the 
range of 1 N/m, so if we want to cast 10 grams, its equivalent mass would 
roughly have to correspond to 3.3 grams to have the fundamental frequency 
of a rod around a little bit less than 3 Hz (2.77 Hz in this case).  
 
 
 

• Referring back to the spring means that its mass (µ) is about 10 grams also 
(3*3.3). 
 

• The reel has a relatively large mass but a small inertia, and we have to scale its 
mass so that it is representative of the inertia encountered with an actual fly-
rod and fly-line (10 grams). Even if we assume that rotation is at the elbow 
joint, the inertia from the reel is moderate in comparison with either the 
inertia of the line or the inertia of the rod, which are both in the 100 gm2 
range and more for a number 6 rod (example), whilst the reel weighs about 15 
gm2 for this type of rod.  
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Model adaptation to real rods and shortcuts (1/3) 

• There is one more dimension 
to consider so we have to 
introduce another variable 
like the chord length, polar 
coordinates, or angles instead 
of displacements.  

• The difficulty lies in the 
relationship between the 
components of the 
Lagrangian equation and the 
chord length. In fact all 
parameters like stiffness and 
equivalent masses depend on 
the chord length but there is 
no simple relationship than 
can be processed through the 
methodology that is used.  
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Model adaptation to real rods and shortcuts (2/3) 

• So, in practice, one possibility is to map parameters (stiffness, measured as an 
angular characteristic), and equivalent masses, and use this mapping in the 
numerical solution program. A more correct solution would be to use 
sophisticated software (professional), which can handle the required level of 
complexity.  

• The advantage of such a shortcut (mapping) is that equations are maintained 
as they are but adapted for angular variables, and the new equations are 
interpreted (same as for the spring & marble model).  

• It is possible, with an adequate methodology, to estimate the equivalent 
masses (inertia) as the rod deflects, including the global variation of inertia 
(swing weight of the rod).  

• Surprisingly, these equivalent inertia represent approximately 1/3 each of the 
total inertia of the rod, and this explains why a spring can give a good estimate 
of the physics of the fly rod cast.  

• Optimization can be achieved through rod design to maximize or minimize 
each of the equivalent inertia, depending on the objectives in terms of rod 
behaviour. 
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Model adaptation to real rods and shortcuts (3/3) 

• A rod is a non-linear spring and its angular stiffness for any load can be 
estimated as follows:  

 

 

• There is a linear component (Nm/rad) and then a non-linear factor (nl), 
which depends on the amount of deflection of the rod and the direction of 
the force applied to it. θL is the rotation angle of the rod-tip. This results in 
a “Duffing Equation” for the rod-tip motion. 

• For a complete description of the rod, you need to take the chord of the 
deflected rod under consideration in the equations. 

28/02/2016 © Daniel Le Breton 2016 47 



Angular parameters 

• With the fly-rod in a horizontal position and a force (F) applied at the tip. 
Deflection is “z” and stiffness can be estimated from the ratio F/z (N/m) = k  

• To consider the angular stiffness, assume that there is a small deflection and 
the moment of the force F is F*L: L being the length of the rod. Then its 
angular stiffness is FL/θ = Kw: θ being the angular position of the tip as 
illustrated above. The dimension of this scalar quantity is Nm/rad  

• In the linear domain represented by small deflections, we can write that Kw ≃ 
k*L2, because z ≃ θL  

• In practice, we use this to estimate rod stiffness with the F/z relationship  
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Self deceleration equation for a rod (1/3) 

• The following can be used as a guideline. Instead of mass, we speak of 
inertia and the notation used is:  
– Jotip = equivalent inertia at tip end 

– Jobutt = equivalent inertia at butt end 

– Jotransfer = equivalent transfer inertia 

• Hence SW (swing weight) = Jotip + Jotransfer + Jobutt 

• If Kw is the angular stiffness, then by comparison to the spring Kwlin = k L2 

(square of rod length). 

• The fundamental frequency of the rod is: 

• The inertia of the reel is noted Jreel 
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Self deceleration equation for a rod (2/3) 

• Below is the equation for the deceleration of the butt for a limited deflection 
(for a large deflection, L is replaced by the chord) applied to a fly-rod. This is 
essentially a guide since it has been simplified by making some assumptions:  
 
 
 

 
• The influence of the line (M) is large and it dictates the deceleration of the 

butt. 
• The role of the various equivalent inertias can be seen. A tip action rod (small 

Jotip) or a butt action rod (high Jotip) have an influence on the SDM. If a stick 
(rod of constant thickness) is used to cast an apple, then the deceleration of 
the butt is maximized since Jotip represents about 77% of the SW and Jobutt 
something like only 4%. The remaining 19% SW corresponds to the equivalent 
transfer mass; fairly small in comparison to a fly rod.  

• The larger inertia of the reel is, the lower the deceleration rate tends to be. 
Leave it in your pocket if you can!  
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Self deceleration equation for a rod (3/3) 

• In fact a fly rod is directed by another harmonic 
under these circumstances (called free-free ends); 
with two nodes, one in the tip and the other in 
the butt. The one in the butt is influenced by the 
mass of the reel, so if the reel is heavy, the node 
can be lower than the hand of the caster and this 
gives an uncomfortable feel.  The best way to 
control the behaviour of the rod is to have the 
node in the butt just under the grip. 

• Therefore, it is recommended the mass of the reel 
is limited to something like one, to one and a half 
times, the mass of the rod.  

28/02/2016 © Daniel Le Breton 2016 51 


