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This report summarizes a model for the drag forces acting on the front of a loop. 
These forces decelerate of the loop as it propagates horizontally but they also 
contribute to keeping it aloft. The drag forces result from both “skin friction” and 
“form drag” on the loop.   
 
The loop front is assumed to be semi-circular, the upper leg is assumed to travel 
to the right with velocity ov� , and the lower leg is assumed to be at rest as shown in 
the figure below.  Thus, the velocity of point “t” at the “top” of the loop is ov� , 
while the velocity of the point “b” at the bottom of the loop is zero.  The velocity 
of any point “p” on the loop front will necessarily be smaller that at “t” and it will 
have both horizontal and vertical components.  We must first determine this 
“velocity field” prior to modeling the skin friction and form drag on the loop 
front. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Definition of a propagating loop composed of a semi-circular loop front 
and upper (traveling) and lower (stationary) segments. 
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Velocity Field 
 
Let )ˆ,ˆ,ˆ( kji be a frame of reference attached to the loop and at this instant located 
at the bottom point “b”. The unit vector k̂ points out of the page.  The angular 
velocity of this frame of reference is the angular velocity of the loop and this is 
given by kRv ˆ)2/( 0���

� where ov is the speed of the upper leg. Let �  denote the 
angle formed between the vertical and the radial line to any point “p” on the loop 
front. We can now compute the velocity of point “p” by using 
 

bpp rv ���

���  
where bpr� is the position vector locating p relative to b.  Thus, the velocity at p is 
perpendicular to bpr� .  Substituting into this the expressions for ��  and bpr�  yields 
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Notice that the velocity at the top of the loop ( )0�� is ivo

ˆ and that the velocity at 
the bottom of the loop ( )�� � is zero as required. The velocity at the “nose” of 

the loop ( )2/�� � has magnitude (speed) ov
2
2 (about 70% of ov ) and it is 

directed a o45 angle below the horizontal. In general, the velocity at any point p is 
directed at a right angle from the position vector bpr� as shown in the sketch below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The velocity at point p is at right angles to the position vector 
from the bottom b to point p.  

 
Notice that the speed || pp vv �

�  (the magnitude of the velocity vector) “decays” 
from a maximum value at the top of the loop to zero at the bottom. Moreover, the 
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direction of the velocity vector changes from being horizontal (to the right) at the 
top to very nearly vertical (downwards) near the bottom.  The speed at any point p 
is given by  

�cos1
2
2|| ��� opp vvv �  

 
Below is a plot that shows how the speed decays around the loop in terms of the 
percentage of the speed at the top.  

 
 

Figure 3. The speed decays from a maximum at the top of the loop 
( o0�� ) to zero at the bottom of the loop ( o180�� ). The speed at the 
“nose” of the loop ( o90�� ) is still 70% of that at the top. 
 

With the above understanding of the velocity field, we can now formulate the 
drag force model as discussed next. 
 
Drag Force Model 
 
 Consider next a small element of the fly line in the front of the loop as shown in 
the next figure.  This element subtends the infinitesimal angle �d and has the 
infinitesimal length �Rd . The element is subjected to a component of drag that is 
tangent to the loop as denoted by the infinitesimal force tDd

�

in the figure. This 
drag component is referred to as skin friction. Skin friction acts upon the full 
surface area of the cylindrical element as given by �� RdddA l� . In addition, the 
element is subjected to a component of drag that is normal (perpendicular) to the 
loop as denoted by the infinitesimal force nDd

�

in the figure. This drag component 
is referred to as form drag.   The form drag is proportional to the projected area of 
the element normal to loop as given by �RdddA l� . 
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Position on Loop Front, �   (degrees) 

Speed 100% of ov  at top 

Speed 70% of ov  at “nose” 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The normal drag component nDd
�

(form drag) and the 

tangential drag component tDd
�

 (skin friction) acting on an infinitesimal 
element of fly line in the front of the loop.  

 
We now introduce a suitable model for the skin friction and form drag. To this 
end, reconsider the velocity vector pv� shown in Fig. 2 and resolve this vector into 
components tangential and normal to the loop as indicated by the unit vectors 

)ˆ,ˆ( nt shown in Fig. 5 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The velocity at point p is resolved into components along the 
local tangential and normal )ˆ,ˆ( nt . 

 
 
Notice that 
 ˆ ˆˆ cos sint i j� �� �  (1.2) 
 ˆ ˆˆ sin cosn i j� �� �  (1.3) 
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We can use Eqs. (1.2) and (1.3) together with Eq. (1.1) to compute the 
components of pv� along the tangential and normal as follows 
 

tangential component   
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 normal component 
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The infinitesimal skin friction and form drag are  
 
 skin friction 

 21 ˆ
2t a l dt tdD d RC v td� � �� �

�

 (1.6) 

 
 form drag 
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 (1.7) 

in which dtC and dnC are the tangential drag (skin friction) coefficient and the 
normal drag (form drag) coefficient, respectively. Substituting the expressions for 

tv and nv from (1.4) and (1.5) into (1.6) and (1.7) provides us with a complete 
description of the infinitesimal skin friction and form drag acting on an 
infinitesimal element of fly line at any position � on the loop front. We will now 
integrate (1.6) and (1.7) from 0��  to �� �  in arriving at the net skin friction 
and form drag acting on the entire loop front. In addition, we will resolve these 
net drag forces into horizontal and vertical components.  We begin with the 
vertical component. 
 
Vertical Component of Drag on Loop Front, yD  
 
The vertical component of the net drag is computed from 
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Making use of Eqns. (1.2-1.5), this expands to 
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The first term in the integrand captures the contribution of skin friction while the 
second term captures the contribution of form drag.  The integral of the second 
term vanishes and therefore form drag makes no contribution to the net drag force 



in the vertical direction.1 Performing the integration results in the final result for 
the vertical component of drag on the entire loop front. 

 2
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This upwards drag component opposes the weight of the loop given by 

 
2
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Applying Newton’s law in the vertical direction )( yy maDW �� allows one to 
compute the vertical acceleration of the loop 
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where positive acceleration is taken as downwards.   
 
We can use the simple result above for ya to make several observations about how 
the loop drag opposes gravity. 
 

1. Skin friction reduces the downwards acceleration of the loop. 
2. This reduction grows with the square of the speed of the upper leg. 

Thus, a loop traveling twice as fast generates four times the “lift” 
due to skin friction. 

3. This reduction is inversely proportional to the fly line diameter and 
the fly line density. Thus, “thin” lines of lesser density will 
generate more “lift” due to skin friction. 

4. This reduction is proportional to the drag coefficient for skin 
friction. Thus, increasing this drag coefficient will generate more 
“lift” due to skin friction. 

5. This reduction is independent of loop radius.  Note however that 
larger loops will decelerate more rapidly leading to smaller ov  and 
therefore the dependence on loop diameter is really implicit 
through the speed ov . The point is that smaller loops are generally 
launched with higher speeds and therefore they achieve greater 
initial “lift” due to skin friction. 

 
Illustrative Examples 
 
We will consider several examples that illustrate how the vertical acceleration of 
the loop as given by Eq. (1.10) varies with fly line properties and loop speed. We 
begin by studying how the skin friction drag coefficient dtC affects ya and as the 
loop slows down. Consider a typical floating fly line with diameter 

1.5ld mm� and with density 30.85 /l g cm� � .  Let’s assume a value of 

                                                 
1 This conclusion does not hold if the loop is allowed to fall under gravity.  For a falling loop, 
form drag quickly develops and would indeed contribute a component in the vertically up 
direction acting opposite gravity. 



3.00129 /a g cm� � for the density of air and study how the vertical acceleration 
varies over a wide range of speed ov for the upper segment.  Results are shown in 
the figure below. 
 

 
Figure 6. The vertical acceleration of the loop front as the cast unfolds 
from high speed to low speed. Results are shown for an example floating 
line for three different skin friction drag coefficients.  

 
 
The speed ov decreases as the cast unfolds and the resulting vertical acceleration 
decreases as well.  Short length casting would likely involve speeds less than 25 
m/s while distance casting may involve launch speeds that are two or three times 
higher. Thus, the speed range shown is reasonable.  In all cases, the vertical 
acceleration converges to –g (-9.81 m/s) as the speed reaches zero since the drag 
forces vanish at zero speed.  There is a significant dependence on the skin drag 
coefficient dtC and while the value of this quantity is not well known, values in the 
range of .0015 and slightly higher have been suggested.  The results show that at 
higher speeds, larger values of skin friction can “cancel” (or even overpower) 
gravity for a short period of time. This might help explain why tight loops, which 
are also necessarily launched at higher speed, might actually stay “aloft” longer 
even when launched purely in the horizontal direction. 
 
Consider next how these results are affected by changing the fly line diameter. 
The results shown below contrast a line with the original diameter ( 1.5ld mm� ) 
with a line having twice this diameter and a line having one half this diameter. 
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Figure 7. The vertical acceleration of the loop front as the cast unfolds 
from high speed to low speed. Results are shown for an example floating 
line for three different line diameters. These results can also be used to 
predict the effect of line density as explained below. 

 
Clearly, there is also strong dependence on the fly line diameter as expected from 
Eq. (10) with smaller diameter lines experiencing less downwards acceleration for 
equal speed.  This result expresses the simple fact that the fly line weight scales 
with the square of the fly line diameter, whereas the vertical drag force scales 
linearly with the fly line diameter.  Thus, smaller diameter lines have a higher 
vertical drag to weight ratio (i.e., /yD W varies as1/ ld ). 
 
Changing the fly line density leads to the very same conclusions as changing the 
fly line diameter above, namely the vertical drag to weight ratio is inversely 
proportional to the fly line density. (i.e., /yD W varies as1/ l� ). Thus, in the figure 
above, the curve for 3ld mm� is the same result as for a line with half the 
diameter ( 1.5ld mm� ) but twice the density ( 31.7 /l g cm� � ) resulting in a 
sinking line. 
 
An important point to keep in mind is that the loop in this model is assumed to be 
moving horizontally and never vertically.  The vertical component of drag that 
results from skin friction clearly opposes gravity and it will in general be smaller 
that gravity.  Thus, the loop will ultimately accelerate downwards.  As it does, 
then form drag will develop and contribute substantially to the drag in the vertical 
direction.  This too will slow the fall of the loop. 
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Horizontal Component of Drag on Loop Front, xD  
 
The horizontal component of the net drag is computed from 
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Making use of Eqns. (1.2-1.5), this expands to 
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The first term in the integrand captures the contribution of skin friction while the 
second term captures the contribution of form drag.  The integral of the first term 
vanishes and therefore skin friction makes no contribution to the net drag force in 
the horizontal direction.2 Performing the integration results in the final result for 
the horizontal component of drag on the entire loop front. 

 21
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This leftwards drag component decelerates the loop. 
 

                                                 
2 This conclusion does not hold if the loop is allowed to fall under gravity.  For a falling loop, skin 
friction would contribute to the net horizontal drag, albeit in a very modest way. 
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